1 Hypothesis Testing

1.1 Concepts

1. To test for independence, it is just a modified version of the χ^2 test. You sum up the rows to get N_i and the columns to get M_j . Let the total sum of all the elements be S. Then, your expected distribution at square ij is $\frac{N_iM_j}{S}$, and then you perform the χ^2 test. If you have r rows and c columns, then the number of degrees of freedom is (r-1)(c-1).

1.2 Examples

2. An infomercial claims that a miracle drug will cause you to grow all your hair back. There are 25 brave participants and surprisingly 7 people regrew their hair. If normally 10% of people regrew their hair, can you say that this drug worked?

Solution: The null hypothesis is that the drug did not help and people regrow their hair with probability p = 10% = 0.1. Therefore, in a sample of 25 people, we expect a geometric distribution with n = 25, p = 0.1 and hence mean np = 2.5 and standard deviation $\sqrt{np(1-p)} = \sqrt{2.5 \cdot 0.9} = 1.5$. This is approximately normally distributed by the central limit theorem. Thus the probability of getting 7 people regrowing their hair is $1/2 - z(|7 - 2.5|/1.5) = 1/2 - z(3) < \alpha$. So, we can reject the null hypothesis and say that the drug worked.

3. The following are the actual exit poll results from the 2016 election. Is who you vote for and your age independent?

	18-24	25-29	30-39	40-49	50-64	≥ 65
Clinton	1375	1194	2129	2146	3242	1768
Trump	835	840	1628	2286	3831	2043
Other	246	177	418	233	295	118

Solution: We fill out the table with the sums to get:

	18-24	25-29	30-39	40-49	50-64	≥ 65	
Clinton	1375	1194	2129	2146	3242	1768	11854
Trump	835	840	1628	2286	3831	2043	11463
Other	246	177	418	233	295	118	1487
	2456	2211	4175	4665	7368	3929	24804

Now we can create an expected value table. If the values were independent, then for instance, the percentage of 30-39 year olds who support Clinton should be the percentage of Clinton supporters times the percentage of 30 - 39 year olds or $\frac{11854}{24804}$. $\frac{4175}{24804}$. Filling out the table with this data gives the following values:

1173.739074	1056.651911	1995.260845	2229.435172	3521.217223	1877.695775
1135.023706	1021.798621	1929.447871	2155.898041	3405.071118	1815.760643
147.2372198	132.5494678	250.2912837	279.6667876	441.7116594	235.5435817

And computing the statistic gives: 650.0178363. The critical value for (6-1)(3-1) = 10 degrees of freedom is 18.307. Thus, we can reject the null hypothesis and say that these two are related.

1.3 Problems

4. Every year 25% of people contract the flu. This year, the NIH comes out with a vaccine and out of 100 people, there are only 20 people who contract the disease. Was the vaccine successful?

Solution: The null hypothesis is the vaccine was not successful and hence the probability of getting the disease is p = 0.25. When we sample 100 people, we expect a binomial distribution with n = 100 and hence have a mean of np = 25 and standard deviation of $\sqrt{np(1-p)} = \frac{5\sqrt{3}}{2}$. So the probability of getting at least an extreme case of 20 people is $\frac{1}{2} - z(|20-25|/(5\sqrt{3}/2)) \approx 1/2 - z(1.15) = 0.5 - 0.3749 = 0.1251 > \alpha$. So, we cannot reject the null hypothesis.

5. In a skittle bag, you get 11 red skittles, 12 blue, 5 green, 10 yellow, and 13 orange skittles. Is it possible that the colors are evenly distributed with a significance level of $\alpha = 0.05$?

Solution: In 50 skittles, we expect to get 10 of each. Following the formula, our statistic is:

$$\frac{(11-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(5-10)^2}{10} + \frac{(10-10)^2}{10} + \frac{(13-10)^2}{10}$$
$$= \frac{1+4+25+0+9}{10} = 3.9.$$

There are 5 options so we have 5-1 = 4 degrees of freedom. For 4 degrees of freedom and $\alpha = 0.05$, our critical value is 9.488. Since 3.9 < 9.488, we cannot reject the null hypothesis that the colors are evenly distributed.

6. You are wondering whether performing well in this course and gender are related and Male Female

		male	Female	
you get the following table. Are they related?	Pass	175	725	
	Fail	25	75	

Solution: There are a total of 900/1000 people who pass and 100/1000 who fail, and 200/1000 who are male and 800/1000 who are female. Thus, if they were independent, for instance we would expect that $\frac{800}{1000} \cdot \frac{900}{1000} = 72\%$ of people to be female and pass. We can fill out the expected table as follows:

	Male	Female
Pass	180	720
Fail	20	80

Now we can do the χ^2 test to get a statistic of

$$\frac{(175 - 180)^2}{180} + \frac{(725 - 720)^2}{720} + \frac{(25 - 20)^2}{20} + \frac{(75 - 80)^2}{80} = 1.7$$

The critical value for 1 degree of freedom is 3.841 and 1.7 < 3.841 so we cannot reject the null hypothesis.

1.4 Extra Problems

7. Every year 25% of people contract the flu. This year, the NIH comes out with a vaccine and out of 1600 people, there are only 350 people who contract the disease. Was the vaccine successful?

Solution: The null hypothesis is the vaccine was not successful and hence the probability of getting the disease is p = 0.25. When we sample 1600 people, we expect a binomial distribution with n = 1600 and hence have a mean of np = 400 and standard deviation of $\sqrt{np(1-p)} = 10\sqrt{3}$. So the probability of getting at least an extreme case of 20 people is $\frac{1}{2} - z(|350 - 400|/(10\sqrt{3})) \approx 1/2 - z(2.89) = 0.5 - 0.4981 = 0.0019 < \alpha$. So, we reject the null hypothesis and say that the vaccine was successful.

8. In a skittle bag, you get 14 red skittles, 12 blue, 1 green, 10 yellow, and 13 orange skittles. Is it possible that the colors are evenly distributed with a significance level of $\alpha = 0.05$?

Solution: In 50 skittles, we expect to get 10 of each. Following the formula, our statistic is:

$$\frac{(14-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(1-10)^2}{10} + \frac{(10-10)^2}{10} + \frac{(13-10)^2}{10}$$
$$= \frac{16+4+81+0+9}{10} = 11.$$

There are 5 options so we have 5 - 1 = 4 degrees of freedom. For 4 degrees of freedom and $\alpha = 0.05$, our critical value is 9.488. Since 11 > 9.488, we reject the null hypothesis that the colors are evenly distributed.

9. You are wondering whether performing well in this course and gender are related and

		Male	Female
you get the following table. Are they related?	Pass	315	485
	Fail	85	115

Solution: There are a total of 800/1000 people who pass and 200/1000 who fail, and 400/1000 who are male and 600/1000 who are female. Thus, if they were independent, for instance we would expect that $\frac{800}{1000} \cdot \frac{600}{1000} = 48\%$ of people to be female and pass. We can fill out the expected table as follows:

	Male	Female
Pass	320	480
Fail	80	120

Now we can do the χ^2 test to get a statistic of

$$\frac{(315 - 320)^2}{320} + \frac{(485 - 480)^2}{480} + \frac{(85 - 80)^2}{80} + \frac{(115 - 120)^2}{120} = 0.651.$$

The critical value for 1 degree of freedom is 3.841 and 0.651 < 3.841 so we cannot reject the null hypothesis.